The Year in Lipid Disorders presents the inquiring physician with an up-to-date insight into the latest research on dyslipidaemias, and the implications of this research for daily clinical practice, highlighting throughout the key role of lipid disorders in developing atherosclerosis and heart disease. The book provides an overview of the latest developments in this complex field by reviewing the most significant papers published in the leading medical journals, and analyses in depth recent results of key clinical trials.

Related titles
- Clinical Challenges in Lipid Disorders
 P P Toth, D A Sica
 ISBN 978 1 84692 029 5
- Therapeutic Strategies in Cardiovascular Risk
 I M Graham, R B D'Agostino
 ISBN 978 1 84692 034 9
- Therapeutic Strategies in Lipid Disorders
 A Torkin
 ISBN 978 1 84692 034 9
Contents

Editors and contributors vii

Part 1
Clinical aspects of atherosclerotic disease 1

1. Proprotein convertase subtilisin/kexin type 9 (PCSK9): molecular function and impact of its mutations and polymorphisms on cholesterol levels and related diseases 3
 Marianne Abifadel, Catherine Boileau

2. Metabolic syndrome, diabetes and cardiovascular risk 25
 Mohamed. H. Ahmed, Rasaq Olufadi, Christopher D. Byrne

3. Diet and exercise in the prevention and treatment of diabetes and coronary heart disease 47
 Gang Hu, Jaakko Tuomilehto

4. Imaging developments in vascular disease 61
 Colin Berry

Part II
Lipids, lipoproteins and atherosclerosis 79

5. Ezetimibe: mechanism of action update and recent controversies 81
 Harry R. Davis Jr, Margaretann Halleck

6. Oxidative stress, lipoprotein oxidation and atherosclerosis 97
 Richard W. James

7. Updating the metabolism of apolipoprotein B-100-containing lipoproteins in dyslipidaemia 119
 Gerald F. Watts, Dick C. Chan, P. Hugh R. Barrett

8. Triglycerides and atherosclerosis 141
 Thomas D. Dayspring, Gregory S. Pokrywka

Part III

Prevention and treatment strategies 167

9. JUPITER: the crossroads between statin therapy, inflammation and cardiovascular risk reduction 169
 Peter P. Toth

10. New clinical trials of lipid-regulating agents 187
 Anders G. Olsson

11. Statin myopathy 205
 Charles Harper, Terry A. Jacobson

12. Nuclear receptors (PPARs, LXR and TRs) and their role in regulating lipid metabolism 223
 Sue-Anne Toh, John Millar

Part IV

13. Inflammation, inflammatory disease and coronary atherosclerosis 245
 Robert S. Rosenson, Kyaw K. Soe

14. Mechanisms of insulin resistance 273
 Vasudevan A. Raghavan

15. Haemostasis–dyslipidaemia interactions in coronary heart disease 291
 Vellore J. Karthikeyan

Acronyms/abbreviations 311

Index of papers reviewed 315

General index 323
Editors

Peter P Toth, MD, PhD, FAAFP, FICA, FNLA, FCCP, FAHA, FACC
Director of Preventive Cardiology, Sterling Rock Falls Clinic; Chief of Medicine, CGH Medical Center, Sterling, Illinois; Clinical Associate Professor, University of Illinois College of Medicine, Peoria, Illinois; Southern Illinois University School of Medicine, Springfield, Illinois, USA

Contributors

Marianne Abifadel, PharmD, PhD
Associate Professor of Molecular Biology and Biochemistry, INSERM U781, Hôpital Necker-Enfants Malades, Paris, France, and Faculty of Pharmacy, Université Saint-Joseph, Beirut, Lebanon

Mohamed H Ahmed, MD, PhD
Specialist Registrar, Chemical Pathology Department, Southampton University Hospital, Southampton, UK

P Hugh R Barrett, PhD
Winthrop Professor of Systems Biology, Metabolic Research Centre, University of Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia

Colin Berry, BSc, PhD, FRCP, FACC
Reader and Consultant Cardiologist, BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, University of Glasgow, Glasgow, UK

Catherine Boileau, PharmD, PhD
Professor of Genetics, INSERM U781, Hôpital Necker-Enfants Malades, Paris, France, and Laboratoire de biochimie et de génétique moléculaire, hôpital Ambroise-Paré, APHP, Université Versailles–Saint-Quentin-en-Yvelines, Boulogne, France

Christopher D Byrne, FRCP, FRCPath, PhD
Professor Endocrinology & Metabolism, The Institute of Developmental Sciences, Southampton General Hospital, Southampton, UK
Dick C Chan, PhD
Assistant Professor, Metabolic Research Centre, University of Western Australia, Perth Royal Hospital, Perth, Western Australia, Australia

Harry R Davis, PhD
Distinguished Research Fellow, Cardiovascular and Metabolic Diseases, Merck Research Labs, Schering Plough Research Institute, Kenilworth, New Jersey, USA

Thomas D Dayspring, MD, FACP, FNLA, NCMP
Clinical Assistant Professor of Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, and Director, North Jersey Institute of Menopausal Lipidology, Wayne, New Jersey, USA

Margaretann Halleck, PhD, DABT
Director, Toxicology, Merck Research Labs, Lafayette, New Jersey, USA

Charles R Harper, MD, FACP
Associate Professor Medicine, Director Grady Lipid Clinic, Associate Director, Division of General Medicine, Emory University School of Medicine, Atlanta, Georgia, USA

Gang Hu, MD PhD
Assistant Professor, Chronic Disease Epidemiology, Population Science, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA

Terry A Jacobson, MD, FACP
Director, Office of Health Promotion and Disease Prevention, and Professor of Medicine, Emory University, Atlanta, Georgia, USA

Richard W James, PhD
Professor, Clinical Diabetes Department of Internal Medicine, Medical Faculty, University of Geneva, Switzerland

Vellore J Karthikeyan, MBBS, MRCP
Specialty Registrar, Cardiology, Aintree University Hospitals NHS Trust, Liverpool, UK

John S Millar, PhD
Senior Research Investigator, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
Anders G Olsson, MD, PhD
Professor of Internal Medicine, Department of Medicine and Care, University Hospital, Berzelius Science Park, Linköping, and Stockholm Heart Center, Stockholm, Sweden

Rasaq Olufadi, MBBS, MMed (Chemical Pathology)
Specialist Registrar, Chemical Pathology Department, Southampton University Hospital, Southampton, UK

Gregory S Pokrywka, MD, FACP, FNLA, NCMP
Assistant Professor of Medicine, Johns Hopkins University School of Medicine, and Director, Baltimore Lipid Center, Baltimore, Maryland, USA

Vasudevan A Raghavan, MBBS, MD, MRCP (UK)
Director, Cardiometabolic & Lipid Clinic Services, Division of Endocrinology, Diabetes & Metabolism, Scott and White and Texas A&M Health Sciences Center, Temple, Texas, USA

Robert S Rosensen, MD, FACP, FACC, FAHA
Director, Lipoprotein and Metabolic Disorders Research, Mount Sinai Heart, and Professor of Medicine, Mount Sinai School of Medicine, New York, New York, USA

Kyaw Soe, MBBS, MD
Clinical Instructor of Medicine and Clinical Fellow, Division of Endocrinology and Metabolism, SUNY Downstate Medical Center, Brooklyn, New York, USA

Sue-Anne Toh, MD
Instructor of Medicine, Institute for Translational Medicine and Therapeutics, Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Jaakko Tuomilehto, MD, MPoSc, PhD
Professor of Public Health, University of Helsinki, National Public Health Institute, Diabetes and Genetic Epidemiology Unit, Department of Epidemiology and Health Promotion, Helsinki, Finland

Gerald F Watts, DSc, PhD, MD, FRACP, FRCP
Winthoe Professor of Medicine, Metabolic Research Unit, University of Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia
Part 1

Clinical aspects of atherosclerotic disease
Proprotein convertase subtilisin/kexin type 9 (PCSK9): molecular function and impact of its mutations and polymorphisms on cholesterol levels and related diseases

MARIANNE ABIFADEL, CATHERINE BOILEAU

Introduction

Hypercholesterolaemia is one of the major causes of coronary heart disease (CHD). Mendelian forms of hypercholesterolaemia have been identified: first the autosomal dominant form (autosomal dominant hypercholesterolaemia [ADH]) and later the autosomal recessive form (ARH).

ADH (OMIM 144400) is characterized by a selective increase in the levels of low-density lipoprotein cholesterol (LDL-C) in plasma, giving rise to tendon and skin xanthomas, arcus corneae and cardiovascular deposits, leading to progressive and premature atherosclerosis, CHD and mortality. ADH is a heterogeneous genetic disorder. Its most frequent and archetypal form is familial hypercholesterolaemia (FH), the frequency of which is 1 in 500 in heterozygotes and 1 per million in homozygotes [1]. The disease is co-dominant, with homozygotes more severely affected than heterozygotes. FH is caused by mutations in the gene that encodes the LDL receptor (LDLR at 19p13.3; MIM 606945, 143890) [1]. The second form of ADH is familial defective apolipoprotein B (apoB)-100, caused by mutations in the apoB gene (APOB at 2p23–p24; MIM 107730, 144010) encoding the ligand of the LDL receptor [2].

Through the French Research Network for ADH, French families with hypercholesterolaemia and no mutations in the LDLR or APOB gene were recruited. Some of these families allowed us, using a positional cloning approach, to identify the third gene implicated in ADH: proprotein convertase subtilisin/kexin type 9 (PCSK9; MIM 607786) at 1p32.3 [3]. The discovery of PCSK9 and its suggested
role in cholesterol homeostasis shed light on a major player in the regulation of plasma LDL-C levels that has been extensively studied and constitutes one of the most interesting therapeutic targets for the reduction of LDL-C.

In the present chapter, we will summarize the molecular functions of PCSK9, the impact of its mutations and polymorphisms, and the role that this enzyme plays in LDL metabolism and risk for CHD, focusing on recently published studies.

PCSK9 mutations inducing ADH are relatively rare but well documented (familial segregation analysis, in vitro mutagenesis, etc.) [4]. Most enzymopathies are recessively inherited; thus, the dominance of the ADH trait associated with PCSK9 was in favour of a gain-of-function mechanism [3]. This was confirmed by cellular and animal models showing that these gain-of-function mutations decreased the number of LDL receptors at the cell surface, leading to hypercholesterolaemia [5]. Two years after the first report of gain-of-function mutations leading to hypercholesterolaemia, loss-of-function mutations were described by Cohen et al. [6] and were found to be associated with lower cholesterol levels and a reduction in CHD. Thus, as for APOB, some PCSK9 gene variants might lead to hypercholesterolaemia whereas others lead to hypocholesterolaemia. However, the frequency of PCSK9 functional single nucleotide polymorphisms (SNPs), their elevated number and their impact on cholesterol levels in several populations mean that PCSK9 variants are more important than variants of the LDLR or APOB gene.

The gain-of-function and loss-of-function mutations and polymorphisms are distributed in all PCSK9 domains (Fig. 1.1), with no structural clue to predict their functional relevance. Besides the rare mutations implicated in ADH, some variants are functionally relevant in cholesterol regulation and their distribution and impact vary in different populations, whereas other SNPs have no clinical impact and are generally more frequent in all populations [4].

PCSK9: from gene to protein

PCSK9 cDNA (NM_174936.2) spans 3617 base pairs over 12 exons that encode the 692 amino acid protein PCSK9 (NP_777596.2). This enzyme is a member of the mammalian serine proprotein convertase (PC) family that is responsible for the proteolytic maturation of secretory proteins including neuropeptides, prohormones, cytokines, growth factors, receptors and serum and cell surface proteins [7]. PCSK9 protein was formerly named neural apoptosis-regulated convertase 1 (NARC-1) as it was first identified by the cloning of cDNAs upregulated following apoptosis induced by serum deprivation in primary cerebellar neurons. NARC-1 was more precisely characterized by Seidah et al. [7] as the ninth member of the subtilisin family of kexin-like proconvertases. PCSK9 is particularly expressed in the liver, gut, kidney and nervous system [7]. The structure of this enzyme, its autocatalytic cleavage in the endoplasmic reticulum (ER), which is essential for transport from this compartment and for secretion [8,9], and the cleavage of the secreted form by other proprotein convertases, particularly furin and/or PC5/6A [8], are shown in...
The 60-kDa mature form and the furin cleaved form of PCSK9 are present in the circulation [8,9].

Impact of PCSK9 on the LDL receptor

The ability of PCSK9 to degrade the LDL receptor is independent of its catalytic activity [9]. The role of PCSK9 serine protease activity seems limited to catalysing the self-cleavage of pro-PCSK9, which is essential for PCSK9 secretion from liver cells and for the reduction in the number of LDL receptors [10]. Although the mechanism by which PCSK9 regulates LDL receptor degradation is not fully resolved, it seems to involve both intracellular and extracellular pathways [8]. PCSK9 may work in a post-ER compartment, where it may target the LDL receptor for degradation in lysosomes. But secreted PCSK9 may also bind to the first epidermal growth factor-like repeat (EGF-A) of the LDL receptor at the cell surface, and the PCSK9/LDL receptor complex could be internalized into endosomal/lysosomal compartments [10]. PCSK9–LDL receptor affinity is increased in the endosome because of its higher acidity [10]. Failure to release PCSK9 may hinder receptor recycling and reduce the cell surface abundance of LDL receptor [11]. The LDL receptor would
then be rerouted from the endosome to the lysosome, where it is degraded [10]. Thus, PCSK9 functions as a chaperone to prevent LDL receptor recycling and/or target LDL receptors for lysosomal degradation [9].

Major hypercholesterolaemic mutations and gain-of-function mechanisms

The first two mutations of PCSK9 we identified in families with hypercholesterolaemia were the p.S127R mutation, which was found in two French families in exon 2 in a highly conserved region between species, and the p.F216L mutation in exon 4, identified in a French family in which the proband died from myocardial infarction at age of 49 years with a total cholesterol level of 441 mg/dl and an
The p.D374Y mutation was reported in 2004 in a hypercholesterolaemic Utah kindred [12], in three Norwegian families and in three English families including 12 affected individuals suffering from severe hypercholesterolaemia and with a family history of premature CHD [13]. Another mutation, p.D374H, which concerns the same amino acid, was identified in two unrelated Portuguese patients and one relative who presented a very severe phenotype with extremely high total cholesterol levels and a familial history of premature CHD [14]. Two mutations adjacent to the p.F216L mutation are also linked to hypercholesterolaemia: the p.R218S mutation, which was found in a French proband ascertained at age 45 years with 402 mg/dl total cholesterol and 293 mg/dl LDL-C and presenting with tendinous xanthoma and arcus corneae [15], and the p.R215H mutation in two families from Norway [16]. Furthermore, the p.D129G mutation was identified in a family originating from New Zealand [17]; it also segregates with the ADH phenotype and concerns highly conserved residues.

These missense gain-of-function mutations of PCSK9 reported in families with ADH cause a clinical phenotype resembling FH caused by LDLR gene mutations: tendon xanthomas, CHD, premature myocardial infarction and stroke. To characterize the mechanisms underlying hypercholesterolaemia, in vivo and in vitro studies as well as animal models were analysed. In vivo kinetic studies of apoB-100-containing lipoproteins conducted in two French subjects carrying the p.S127R mutation in PCSK9 showed that this mutant dramatically increased the production rate of apoB-100 (threefold) compared with control subjects or LDLR-mutated patients and led to a higher direct overproduction of very low-density lipoprotein (VLDL) (threefold), intermediate-density lipoprotein (IDL) (threelfold), and LDL (fivelfold) [18]. A lower conversion rate of VLDL and IDL compared with control subjects and heterozygous FH patients was also observed. Finally, the LDL fractional catabolic rate was slightly decreased (by 30%) compared with control subjects but was still higher than in LDLR-mutated subjects [18]. The p.D374Y gain-of-function mutation was also associated with increased apoB-100 secretion [13,19].

In animal models, human mutant PCSK9 (p.S127R and p.F216L) overexpressed in the liver of mice leads to hypercholesterolaemia owing to a dramatic decrease in hepatic LDL receptor levels through a post-transcriptional mechanism [5]. This was also seen with overexpression of wild-type PCSK9 in mice, which caused a twofold increase in plasma total cholesterol and a fivefold increase in non-high-density lipoprotein (HDL) cholesterol levels with no effect on LDLR mRNA level [5].

In vitro studies showed that the two gain-of-function mutations p.S127R and p.D374Y resulted in a 23% decreased level of cell surface LDL receptors and a 38% decreased level of internalization of LDL compared with wild-type PCSK9 [20]. The p.S127R variant interferes with autocatalytic cleavage, which is crucial for secretion from the cell, but its exact mechanism in hypercholesterolaemia has not yet been elucidated. The role of the p.D374Y mutation is better understood; it affects the affinity of PCSK9 for the LDL receptor and enhances receptor degradation. In fact, the gain-of-function mutation p.D374Y binds the LDL receptor 25 times more tightly than wild-type PCSK9 at neutral pH, remains in a high-affinity complex at
acids of p.R218S, p.F216L and p.D374Y result in total (p.R218S) or partial loss of the furin/PC5/6A processing of PCSK9 at the motif RFHR↓218, which leads to an inactive form (of 53 kDa). Thus, these gain-of-function mutations act by increasing the stability of PCSK9 [8].

Other rare mutations (p.R357H for example) that were found in hypercholesterolaemic patients [15], but absent in normolipidaemic control subjects, are evolutionarily conserved between species. Some other rare variants were found only in patients with high LDL-C from specific populations (African American: p.F515L for example) but their association with the disease is less evident [4]. The most important PCSK9 mutations or polymorphisms are reported in Fig. 1.1.

PCSK9 and hypocholesterolaemia

Two years after our first report of the role of PCSK9 in cholesterol metabolism and disease, Cohen et al. [6] searched for mutations in PCSK9 in subjects with low plasma levels of LDL-C (LDL-C < 58 mg/dl) from the Dallas Heart Study, a multiethnic population of Dallas County, Texas (52% African American, self-identified as 'Blacks', 29% European American, self-identified as 'Whites', 17% Hispanic and 2% other ethnicities, in accordance with US census categories [22]). They identified two nonsense mutations: p.Y142X in exon 3, found in 0.4% of African Americans, and p.C679X in exon 12, found in 1.4% of African Americans but very rarely in European Americans (< 0.1%). Subjects with nonsense mutations had significantly (28%) lower plasma levels of total cholesterol and LDL-C, but not all of them were hypocholesterolaemic. Their LDL-C values ranged from the first to the fiftieth percentiles adjusted for age and sex when compared with the entire sample of African Americans in the Dallas Heart Study [6]. In the United States, 1 of every 50 African Americans has a nonsense mutation in PCSK9. This mutation was also found at this same high frequency in a Nigerian population [23] and in 3.7% of African women from Zimbabwe [24], in whom it was associated with a 27% reduction in LDL-C.

Other variants of PCSK9 were also associated with lower plasma levels of LDL-C (reductions ranging from 3.5% to 30%), particularly the p.L253F and the p.A443T variants found in black populations and the p.R46L mutation found in white populations [23,25,26]; however, these polymorphisms might be found also in normo- or hypercholesterolaemic individuals because of other genetic or environmental factors influencing cholesterol levels [3,15,23].

Hallman et al. [27] studied the relationship between PCSK9 mutations and serum LDL-C levels in childhood and adulthood in the Bogalusa Heart Study. They analysed associations of one missense (p.R46L) and two nonsense (p.Y142X and p.C679X) PCSK9 mutations with serum LDL-C levels in 478 African Americans
and 1086 white people, from 4 to 38 years of age. Longitudinal LDL-C profiles were significantly lower in white people with the L46 allele and in African Americans with the X142 or X679 allele. These results showed that these PCSK9 variants are associated with significantly lower LDL-C levels starting in childhood [27].

The *in vitro* studies of these variants showed that no protein was detected with the p.Y142X mutation, probably due to nonsense-mediated mRNA decay, whereas the p.C679X mutant was cleaved normally but was misfolded and retained in the ER [28]. Nassoury *et al.* [29] showed that some of the mutants associated with hypocholesterolaemia either remain in the ER (this is the case for the p.C679X and the p.G106R mutations, the latter segregating with low LDL-C levels in a Norwegian family [25]) or do not sort to endosomes (p.L253F and p.Q554E), resulting in loss of function. Thus, sorting of PCSK9 to the cell surface and endosomes is required for PCSK9 to fully promote LDL receptor degradation, and retention in the ER prevents this activity [29]. Some variants may have several functional defects at the same time. In animal studies, livers of knockout mice lacking PCSK9 (Pcsk9−/−) display increased LDL receptor levels (but not mRNA), which leads to a decrease in plasma cholesterol levels of 48% compared with wild-type littermates [30].

Missense and nonsense mutations of PCSK9 causing mild hypocholesterolaemia are actually quite common and have a marked effect on plasma LDL-C levels and on protection against CHD. However, PCSK9 mutations could be responsible for severe hypocholesterolaemia in homozygous or compound heterozygous carriers. Hooper *et al.* [24] reported a woman originating from Zimbabwe, homozygous for p.C679X, with very low LDL-C levels (15 mg/dl). Furthermore, Zhao *et al.* [28] reported a compound heterozygote for the p.Y142X mutation and an in-frame 3-base pair deletion (c.290_292delGCC) that deletes an arginine at codon 97. This 32-year-old African American woman had no immunodetectable circulating PCSK9. She had an LDL-C level of only 14 mg/dl and was apparently healthy, fertile and normotensive, with grossly normal hepatic, neuronal and renal function tests [28]. In one Sicilian hypobetalipoproteinaemia kindred, a deletion in exon 1 (c.202delG) was found, which causes a frameshift in mRNA leading to a premature stop codon (p.A68fsL82X) [31]. The proband and his father were overweight and had fatty liver. The mutation was found in two unrelated hypocholesterolaemic blood donors living in the same area. These subjects were healthy and had no clinical or laboratory signs of liver disease; the other routine laboratory tests were normal [31]. In the Dallas Heart Study, no significant difference in the median hepatic triglyceride content or in the prevalence of hepatic steatosis between the subjects with and those without an LDL-lowering mutation in PCSK9 was observed in either ethnic group [23]. Hypocholesterolaemia due to a deficiency of PCSK9 appears to be benign, in contrast to other Mendelian forms of severe hypocholesterolaemia such as abetalipoproteinaemia (MIM 200100) and homozygous hypobetalipoproteinaemia (MIM 107730), which are both associated with malnutrition, hepatic steatosis, steatorrhoea and manifestation of fat-soluble vitamin deficiency [28]. Until now, PCSK9 variants have been associated only with altered cholesterol levels in man,
as compound heterozygotes for loss-of-functions mutations in PCSK9 seem to be healthy and have a normal lifespan [5,28].

Impact of PCSK9 variants on coronary heart disease

The impact of PCSK9 variants on cholesterol levels and CHD was analysed in several populations (African [24], American [32], European [4,25]) and studies (ARIC [32], PROSPER [33], LCAS [34], TExGEN [34], PLiC [35]) by evaluating the protection of the loss-of-functions variants or the severity of coronary atherosclerosis associated with gain-of-function polymorphisms.

The ARIC study

The impact of PCSK9 variants in the clinic was ascertained by the protection against CHD found to be associated with three cholesterol-lowering PCSK9 variants (p.C679X, p.Y142X and p.R46L) in the Atherosclerosis Risk in Communities (ARIC) study [32]. The comparison of the incidence of CHD (myocardial infarction, fatal CHD, coronary revascularization) over a 15-year period, according to the presence or absence of these PCSK9 variants, was established in 3363 black and 9523 white participants, from 45 to 64 years of age, constituting four American communities [32]. It is noteworthy that the exclusion criteria in this study included the use of lipid-lowering drugs and the presence of symptomatic cardiovascular disease at baseline. The nonsense mutations occurred in 2.6% of the black subjects examined and were associated with a 28% reduction in mean LDL-C level and an 88% reduction in the risk of CHD. p.R46L, found in 3.2% of the white subjects examined, was associated with a 15% reduction in LDL-C and a 47% reduction in the risk of CHD [32]. These results confirmed the importance of the duration of cholesterol reduction in preventing CHD. In fact, individuals with loss-of-function PCSK9 mutants have low LDL-C concentrations (40 mg/dl lower) throughout their lives, which reduces CHD incidence by 88%, whereas using a statin to reduce cholesterol level by 40 mg/dl for 5 years reduces CHD by only 23% on average. Thus, lowering LDL-C well before atherosclerosis has become advanced is crucial to attain an important reduction in the incidence of CHD [36]. These PCSK9 alleles were also associated with a reduced risk of carotid atherosclerosis with a mean intima–media thickness slightly but significantly lower among carriers than among non-carriers in both groups of subjects [32].

In a recent study, Folsom et al. [37] hypothesized that PCSK9 variants that lower LDL-C levels are associated with reduced prevalence and incidence of peripheral artery disease (PAD). However, their analysis in the same population-based cohort as in the ARIC study provided mixed evidence that PCKS9 variants associated with low LDL-C are associated with reduced occurrence of PAD. Their cross-sectional analysis suggested a halving of PAD prevalence for carriers of these PCSK9 variants.
which is consistent with findings in this same cohort for CHD [32]. In contrast, the low-cholesterol PCSK9 variants were not associated with incident PAD. LDL-C level itself was a comparable risk factor for PAD prevalence and incidence; thus, the lack of association between PCSK9 and incident PAD is surprising and might be due to the fact that PCSK9 variants were relatively uncommon. Therefore, although this study was large, it had statistical power to detect only moderately large associations [37].

The PROSPER study
In the PROSPER study (Prospective Study of Pravastatin in the Elderly at Risk [33]), 2804 men and 3000 women, aged 70–82 years, with pre-existing vascular disease or at least one of three major vascular risk factors (diabetes, smoking or hypertension) were randomized to pravastatin 40 mg/day (n = 2891) or placebo (n = 2913). The mean LDL-C reduction in this study in the active group was 32%, and the risk of developing CHD was decreased by 19% over 3.2 years, which was statistically significant. The study of the PCSK9 p.R46L variant in the 5783 participants (with mean age 75.3 years in PROSPER, of whom 43% had a history of vascular disease at baseline) showed that 3.5% were carriers of the p.R46L variant. These subjects had significantly (P < 0.001) lower levels of LDL-C (mean reduction 10%), no difference in LDL-C-lowering response to pravastatin, and a non-significant (19% unadjusted and 9% adjusted) decreased risk of vascular disease at baseline. These data support the concept that the rare allele of the p.R46L SNP at the PCSK9 locus significantly lowers LDL-C but does not greatly reduce CHD risk in an elderly population with a high prevalence of cardiovascular disease [33].

The LCAS, TexGen and other studies
Concerning gain-of-function variants, a common PCSK9 haplotype encompassing the p.E670G variant was found to be an independent determinant of plasma LDL-C levels and of the severity of coronary atherosclerosis in the Lipoprotein Coronary Atherosclerosis Study (LCAS) and the TexGen populations from Houston (Texas) [34]. The LCAS population comprised 372 subjects who had plasma LDL-C levels of 1.15–1.90 g/dl and one or more coronary lesions causing 30–75% diameter stenosis, whereas the TexGen population comprised 319 subjects who had normal plasma LDL-C levels of <1.30 g/dl. The p.E670G (c.2009A>G) common SNP accounts for 3.5% of LDL-C level variability, with higher levels with the GG genotype, intermediate with the AG genotype, and lowest with the AA genotype. Plasma total cholesterol, apoB and lipoprotein a (Lp[a]) levels were also associated with the p.E670G SNP in these populations [34]. These associations were not found in the Dallas Heart Study [23] nor in the PROSPER study, in which 6.0% of participants were carriers of the G allele at p.E670G, with no significant relationships with baseline LDL-C, response to pravastatin or vascular disease risk [33].

In a European study [38] of 506 patients attending the lipid clinic of the University Hospital in Hamburg, Germany, it was established that the p.E670G polymorphism
in the PCSK9 gene is associated with increased LDL-C in men but not in women. This observation explains the discrepancy in the results between the Dallas Heart Study and the LCAS [34] as the majority of the probands in the LCAS were men, but does not explain the lack of association in healthy men in the UK [26]. Another study has suggested gender as a factor in PCSK9 physiology, with plasma PCSK9 levels correlated with total cholesterol and LDL-C in men but not in women [39]. The explanation for these gender discrepancies is still unknown.

Nevertheless, a study of a potential link between the PCSK9 gene and the risk of ischaemic stroke or intracranial atherosclerosis has recently shown that the p.E670G polymorphism also seems to be associated with the risk of the large vessel atherosclerosis stroke subtype in a Belgian population [40]. In an independent Finnish autopsy study comprising a total of 604 Caucasian subjects (64.3% men and 35.7% women) who died suddenly out of hospital, p.E670G tended to be associated with increased atherosclerosis of the large intracerebral arteries [40].

The PLIC study

In a recent study, Norata et al. [35] investigated the effects of two common polymorphisms of the PCSK9 gene (p.E670G and p.I474V) on the intima–media thickness of the common carotid artery and the possible relation with polymorphisms of apoE in 1541 middle-aged subjects selected from the general population enrolled in the PLIC study and confirmed the major findings in a second free-living population. The PLIC study is a prospective population-based study designed to investigate the presence and progression of atherosclerotic lesions and intima–media thickness in the common carotid artery in a local cohort of men and women. They showed that the 670G carriers were associated with significantly increased plasma total cholesterol, LDL-C and apoB levels, whereas no significant differences were observed in carriers of the p.I474V SNP. The intima–media thickness was significantly increased in p.E670G carriers compared with individuals homozygous for the E allele (0.640 ± 0.102 mm vs. 0.652 ± 0.092 mm, P < 0.05). The presence of the p.E670G allele was also significantly associated with a greater progression of intima–media thickness compared with 670EE subjects. Plasma total cholesterol, LDL-C, apoB and intima–media thickness significantly increased from apoE-2–PCSK9–670EE carriers to apoE-4–PCSK9–670G carriers [35].

Genotype–phenotype correlations

Even if the effect of some variants of PCSK9 is small, their cumulative effect might significantly impact cholesterol variability and CHD susceptibility. Furthermore, the elevation of LDL-C might not be the only atherogenic role of PCSK9 gain-of-function mutations [36]. Further investigation is needed to determine if PCSK9 also exerts a direct toxicity on the arterial wall which is reduced with the loss-of-
function variants that protect against atherosclerosis [36]. Moreover, recent results have shown that PCSK9 polymorphisms might modify the FH phenotype and that some of them could be associated with other dyslipidaemia disorders.

PCSK9 as a modifier gene of FH

Recently, we showed that PCSK9 is a major gene accounting for cholesterol variability not only in normolipaemic subjects but also among FH patients sharing the same LDLR mutation [41]. We reported for the first time that PCSK9 might constitute a modifier gene in FH [41].

More than 1000 LDLR mutations have been reported worldwide having different impacts on the severity of the disease. Nevertheless, the spectrum of FH mutations is much reduced in some populations, such as the Lebanese population, facilitating the investigation of genes that might influence the FH phenotype. We showed in Lebanese FH patients sharing the same LDLR mutation (the p.C681X mutation, which accounts for more than 80% of FH patients in Lebanon) that the polymorphism c.61_63dupCTG (p.Leu21dup, also denoted as L10), an in-frame insertion of one leucine in the stretch of nine leucines in exon 1 of PCSK9, known to be associated with lower LDL-C levels in general populations, is also associated with a reduction in LDL-C levels in FH [41]. In these FH patients, the L10 allele in exon 1 was associated with a reduction in LDL-C levels of 49.3 mg/dl (16%) and an increase in HDL-C of 12.1 mg/dl (28%), with significant P-values of 0.02 and 0.006, respectively, after adjusting for age and sex [41]. This polymorphism, c.61_63dupCTG, is common in both African American (allele frequency 0.27) and Caucasian (allele frequency 0.143) populations [34,42]. The variant was studied in a Caucasian population of 403 unrelated volunteers with total cholesterol levels under 150 mg/dl and was associated with lower LDL-C levels, the L9/L10 heterozygous carriers having 10–15 mg/dl lower LDL-C than L9/L9 carriers [42].

This was the first report of an impact of a PCSK9 polymorphism as a modifier of LDL-C levels in FH subjects [41]. Furthermore, additive effects of mutations in the LDLR and PCSK9 genes on the phenotype of FH have been reported in several studies [15,43]. Three probands heterozygous for mutations in both the LDLR and PCSK9 genes have been reported with plasma levels of LDL-C higher than those in their relatives with either mutation alone [15,43]. These patients displayed a digenic form of hypercholesterolaemia, suggesting that PCSK9 and LDLR mutations have additive effects on LDL metabolism.

PCSK9 variant and familial combined hypercholesterolaemia

Interestingly, the leucine stretch in exon 1 of PCSK9 is more heterogeneous, and an insertion of two leucines (L11, p.L21tri also designated p.L15_L16ins2L) in the leucine stretch of the signal peptide instead of one (L10) seems to be associated with a different phenotype. We have recently identified this L11 allele in two French Canadian families with familial combined hypercholesterolaemia (FCHL) and in one French Canadian woman and her father with hypercholesterolaemia [44]. Like
other PCSK9 variants that are associated with cholesterol variability, the L11 allele was associated with hypercholesterolaemia in the FCHL families studied according to family segregation and the statistical analysis carried out [44].

The L11 allele was reported by Chen et al. [34] with a very low frequency. They found the L11 allele in 7 out of 372 (1.8%) individuals in the LCAS population, which comprised American subjects who had plasma LDL-C levels of 115–190 mg/dl (2.96–4.90 mmol/l) despite diet, and one or more coronary lesions causing 30–75% diameter stenosis [34].

Thus, L11 is a very rare PCSK9 allele that seems to increase total and LDL-C levels in a moderate way and might also be observed in FCHL, where it contributes with other genetic and environmental factors to the appearance of the phenotype of this common, multigenic and highly atherogenic disease characterized by elevated levels of either plasma cholesterol or triglyceride or both in members of the same family. It is noteworthy that the p.R496Q variant of PCSK9 had been identified by Cameron et al. [20] in a subject homozygous for apoE-2 who presented with type III hyperlipoproteinaemia.

Ethnicity variation and human evolution

Some PCSK9 variations are confined to specific populations with the same ethnic origin. This difference could simply result from genetic drift. However, the high frequency of nonsense mutations in individuals of African ancestry suggests that positive selective pressure has maintained these alleles in the population [6]. We can only speculate on the nature of this selective pressure. Thus, it is possible that nonsense PCSK9 mutants confer a selective advantage because they reduce susceptibility to severe parasitic or viral infections. Increased LDL receptor activity might also reduce the exposure of peripheral tissues to organisms or bioactive cytokines that circulate in association with lipoprotein particles [6].

Regulation of PCSK9 transcription

PCSK9 is regulated as a typical cholesterogenic gene and constitutes a target of the sterol regulatory element-binding protein (SREBP) transcription factors [45]. A twofold decrease in PCSK9 mRNA levels was observed in livers of mice fed a cholesterol-rich diet. In contrast, PCSK9 was highly upregulated in SREBP-2 transgenic mice [45]. This is due to the presence in the PCSK9 gene promoter of two conserved sites for transcription factor binding: Sp1 and SRE (sterol-responsive element) [46]. Furthermore, a highly conserved hepatocyte nuclear factor 1 (HNF1) binding site residing 28 base pairs upstream from SRE is a critical sequence motif for PCSK9 transcription and its regulation by berberine [47], a natural plant extract [16]. Moreover, hepatic PCSK9 expression seems to be regulated by nutritional and hormonal status, as summarized in Table 1.1.
Table 1.1 Hormonal, dietary and pharmacological regulation of PCSK9

<table>
<thead>
<tr>
<th>Downregulation/decrease</th>
<th>Upregulation/increase</th>
<th>Study/remarks/references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suppression of SREBP-2</td>
<td>Overexpression of SREBP-2</td>
<td>Animal models</td>
</tr>
<tr>
<td>Cholesterol feeding</td>
<td>Cholesterol depletion</td>
<td>Animal models</td>
</tr>
<tr>
<td>Glucagon</td>
<td>Insulin</td>
<td>Animal models</td>
</tr>
<tr>
<td>Ethinylestradiol</td>
<td></td>
<td>Animal models</td>
</tr>
<tr>
<td>Chenodeoxycholic acid</td>
<td></td>
<td>Immortalized human hepatocytes</td>
</tr>
<tr>
<td>Farnesoid X receptor agonist</td>
<td></td>
<td>Immortalized human hepatocytes</td>
</tr>
<tr>
<td></td>
<td>Inflammation</td>
<td>Animal models</td>
</tr>
<tr>
<td></td>
<td>Statin</td>
<td>Cellular and animal models</td>
</tr>
<tr>
<td>PPAR agonist (fibrate) decreased PCSK9 mRNA and protein in vitro</td>
<td>51</td>
<td>; fenofibrate decreased circulating PCSK9 in the FIELD study</td>
</tr>
<tr>
<td>Berberine</td>
<td>Fenofibrate increased circulating PCSK9</td>
<td>56</td>
</tr>
</tbody>
</table>

HNF1, hepatocyte nuclear factor 1; PCSK9, proprotein convertase subtilisin/kexin type 9; SRE, sterol-responsive element; SREBP-2, sterol regulatory element-binding protein-2.

Circulating PCSK9

PCSK9 is present in human plasma, but the factors that contribute to differences in plasma concentrations have not been well characterized. Several teams have developed an enzyme-linked immunosorbent assay (ELISA) to measure PCSK9 in plasma. Serum PCSK9 measured by ELISA seems to be directly correlated with serum LDL-C and total cholesterol |53| and positively associated with fasting glucose.
and insulin in several studies [54]. In hypercholesterolaemic subjects, PCSK9 levels were higher than in control subjects, and increased in proportion to the statin dose, combined or not with ezetimibe [46]. Atorvastatin (40 mg/day) increases human serum levels of PCSK9 by 34% compared with baseline and placebo [55]. These results could explain why statins do not achieve as much LDL-C lowering as might otherwise be expected. Thus, the addition of a PCSK9 inhibitor to statin therapy may result in additional beneficial LDL-C lowering [56].

Fenofibrate (200 mg per day) significantly increased circulating PCSK9 levels by 25% compared with baseline in some studies [56], but a decrease of 8.5% after 6 weeks of treatment was reported by Lambert et al. [57] in diabetic patients from the FIELD study (Fenofibrate Intervention and Event Lowering in Diabetes). One possibility for the discrepancies between these results may be the type of patient population studied but differences in the analytical technique used may also have contributed [56]. A standardized method, with specific antibodies, is still needed to compare the levels of PCSK9 measured in different studies.

PCSK9 as a new drug target

Statins are among the most widely prescribed drugs in primary and secondary prevention of CHD. This class of drugs lowers plasma cholesterol through inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGCoA) reductase, a key enzyme in cholesterol synthesis, triggering the SREBP-2 response and subsequent activation of LDL receptor synthesis. However, it is now established that statins induce an upregulation of PCSK9 [46] that might attenuate their cholesterol-lowering effect by reducing LDL receptor abundance at the cell surface. Thus, it was suggested that a combined statin–anti-PCSK9 therapeutic regimen could overcome this effect and enhance cholesterol reduction. Initial proof of concept was provided by statin administration to Pcsk9 (−/−) mice, which produced an exaggerated increase in LDL receptors in liver and enhanced LDL clearance from plasma [30]. These experiments confirmed that inhibition of PCSK9 activity should enhance statin hypocholesterolaemic effects by increasing LDL receptor number [30,55].

Finally, the low plasma LDL-C levels and the reduction in CHD found in PCSK9 loss-of-function mutation carriers who appear healthy suggest that the inhibition of PCSK9 could be an effective tool in the management of hypercholesterolaemia with no obvious adverse side-effects. In fact, several strategies to inhibit or lower PCSK9 have been investigated.

Administration of a second-generation antisense oligonucleotide inhibitor targeting murine PCSK9 in mice fed a high-fat diet for 6 weeks reduced total cholesterol and LDL-C levels by 53% and 38%, respectively, and resulted in a twofold increase in hepatic LDLR protein levels [58]. Liver-specific small interfering RNA (siRNA) silencing of PCSK9 in mice and rats reduced PCSK9 mRNA levels by 50–70% and was associated with up to a 60% reduction in plasma cholesterol.
concentrations. In cynomolgus monkeys, siRNA-mediated reduction in PCSK9 mRNA and protein resulted in lowering of LDL-C by approximately 50–60% within 48 h after administration; this reduction lasted for nearly 3 weeks [59].

The identification of small pharmacological molecules or antibodies that might block the interaction between PCSK9 and the LDLR constitute promising therapeutic strategies. Anti-PCSK9 antibodies seem effective therapeutics for treating hypercholesterolaemia. A monoclonal antibody, mAb1, that binds to an epitope on PCSK9 adjacent to the region required for LDLR interaction inhibited in vitro PCSK9 binding to the LDLR [60]. In wild-type mice, mAb1 increased hepatic LDLR protein levels approximately twofold and lowered total serum cholesterol by up to 36%. In cynomolgus monkeys, a single injection of mAb1 reduced serum LDL-C by 80%, and a significant decrease was maintained for 10 days [60]. Furthermore, a combination of mAb1 with a statin increases LDLR levels in HepG2 cells more than either treatment alone [60].

Safety of PCSK9 targeting

Nevertheless, future longer-term repeated dose studies are necessary to investigate the pharmacodynamic and toxicological consequences of these approaches. The only phenotype of PCSK9 deficiency detected in humans is lower plasma cholesterol levels, but it remains possible that ageing or exposure to environmental challenges, such as infectious agents or dietary toxins, may reveal other phenotypes associated with the absence of PCSK9.

It is noteworthy that conditional knockout mice lacking PCSK9 specifically in hepatocytes have impaired liver regeneration after a partial hepatectomy [61]. Furthermore, it has recently been shown that circulating liver PCSK9 has an antiviral effect on hepatitis C virus (HCV) and reduces the surface expression of CD81, a major HCV receptor [62]. PCSK9 has been reported to modulate levels of β-site amyloid precursor protein-cleaving enzyme 1 (BACE), and mice lacking PCSK9 show increased levels of total amyloid β-peptide in the brain [63]. It is noteworthy that no genetic association was found between PCSK9 polymorphisms and Alzheimer’s disease and plasma cholesterol level in Japanese patients studied by Shibata et al. [64]. Finally, it has also been shown that PCSK9 interacts with the VLDL receptor, apoE receptor 2 (apoER2) and annexin A2 [65]. The significance of the interaction between PCSK9 and these proteins is not presently known but these interactions should be kept in mind when considering PCSK9 as a therapeutic target. Possible other unknown functions of PCSK9 and unidentified binding partners might exist; thus, it is important for the safety of new cholesterol-lowering therapy to target specifically PCSK9 action on the LDL receptor.
Conclusion

The rapid progress achieved in the study of PCSK9 highlights the role of classical genetic approaches in identifying new genes implicated in lipid disorders. Other genes implicated in FH are still to be discovered. Their proteins might constitute new therapeutic targets in hypercholesterolaemia, as was the case for PCSK9.

The discovery of PCSK9’s role in cholesterol homeostasis is crucial for the diagnosis of ADH, particularly when the implication of the LDLR and APOB genes is excluded. It has opened the way for a better understanding of the physiopathology of ADH and CHD and should improve the prevention and treatment of these diseases. This new therapeutic target might constitute a new approach to reducing cholesterol levels and CHD and enhancing the effectiveness of other lipid-lowering drugs.

References

