Visual Guide for Clinicians

MULTIPLE SCLEROSIS

Ruth Dobson, MBBS, MA, MRCP
Clinical Research Fellow, Neuroimmunology Group
Blizard Institute, Barts and the London School of Medicine and Dentistry,
Queen Mary University of London, UK

and

Honorary SpR Neurology
Royal London Hospital, Barts Health NHS Trust
Whitechapel, London UK

Gavin Giovannoni, MBBCh, PhD, FCP(Neurol), FRCP, FRCPath
Professor of Neurology,
Blizard Institute, Barts and the London School of Medicine and Dentistry,
Queen Mary University of London, UK

and

Professor of Neurology
Royal London Hospital, Barts Health NHS Trust
London, UK

CLINICAL PUBLISHING
OXFORD
Contents

Contributors & Abbreviations iv

1. Diagnosing multiple sclerosis 1
 R Dobson, A Davis, B Turner

2. Epidemiology of multiple sclerosis 9
 A Handel, S Ramagopalan

3. Magnetic resonance imaging in multiple sclerosis 17
 K Schmierer

4. Neurophysiology of multiple sclerosis 23
 M Baker, C Blomberg

5. Multiple sclerosis differential diagnosis and mimics 31
 G Elrington

6. Pathology of multiple sclerosis 39
 Part 1 – Human: S Amor, P van der Valk
 Part 2 – Animal models: D Baker, S Al-Izki, K Lidster

7. Treatment issues in multiple sclerosis 51
 M Marta, M Papachatzaki

8. Clinical outcome measures in multiple sclerosis 65
 R Dobson, B Turner

9. Neurorehabilitation in multiple sclerosis 71
 A Neligan, J Buttell, C Liu

Index 75
Contributors

Dr Sarah Al-Izki
Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK

Professor Sandra Amor
Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands

Professor David Baker
Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK

Dr Mark Baker
Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK

Dr Cecilia Blomberg
Royal London Hospital, Barts Health NHS Trust, London, UK

Mr Joe Buttell
Regional Neurological Rehabilitation Unit, Homerton Hospital, London, UK

Dr Angharad Davis
Royal London Hospital, Barts Health NHS Trust, London, UK

Dr Giles Elrington
National Migraine Centre, London UK

Dr Adam Handel
Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK

Dr Katie Lidster
Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK

Dr Clarence Liu
Regional Neurological Rehabilitation Unit, Homerton Hospital, London, UK

Dr Monica Marta
Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK

Dr Aidan Neligan
National Hospital for Neurology and Neurosurgery, Queen Square, London, UK

Dr Maria Papachatzaki
Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK

Dr Sreeram Ramagopalan
Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK

Dr Klaus Schmierer
Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK

Dr Ben Turner
Royal London Hospital, Barts Health NHS Trust, London, UK

Professor Paul van der Valk
Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands

Abbreviations

ADEM acute disseminated encephalomyelitis
BBB blood–brain barrier
CMCT central motor conduction time
DMD disease-modifying drug
DWI diffusion-weighted image
EAE experimental autoimmune encephalomyelitis
EBV Epstein-Barr virus
EDSS Expanded Disability Status Score
FAMS Functional Assessment in MS
FLAIR fluid attenuated inversion recovery
GA glatiramer acetate
Gd+ gadolinium enhancing
HLA human leucocyte antigen
IFN interferon
IM infectious mononucleosis
IV inverse variance
JC JC (after John Cunningham) virus
LV EF left ventricular ejection function
MS multiple sclerosis
MSCF Multiple Sclerosis Functional Composite
MSIS-29 MS Impact Scale 29
MSQL-54 MS Quality of Life-54
MUGA multiple gated acquisition scan
MUS medically unexplained symptoms
Nab neutralizing antibody
OCB oligoclonal band
ON optic neuritis
PML progressive multifocal leukoencephalopathy
PPMS primary progressive multiple sclerosis
RF radio-frequency
RNFL retinal nerve fibre layer
RRMS relapsing–remitting multiple sclerosis
S1P sphingosine-1-phosphate
SPMS secondary progressive multiple sclerosis
SSEP somatosensory evoked potential
T Tesla
VEP visual evoked potential
WBC white blood cell
Multiple sclerosis (MS) is an inflammatory disorder of the central nervous system (CNS) and the most common non-traumatic cause of neurodisability in the young. The average age at diagnosis is approximately 30 years. Up to 50% of people with MS become unemployed within 8–10 years of diagnosis, highlighting the high personal and societal cost of this disorder.

Clinical presentation of MS

MS can present with a variety of clinical syndromes (Table 1.1). However, the disease almost always follows one of a few stereotyped courses (1.1), with associated paraclinical findings. Consensus criteria are available for the diagnosis of MS (Table 1.2). A number of ‘red flags’ prompt the physician to consider an alternative diagnosis (Table 1.3).

1.1 Subtypes of multiple sclerosis. (A) Relapsing–remitting MS is characterized by episodic neurological symptoms (relapses), lasting days to weeks, followed by complete or partial recovery. (B) Following relapsing–remitting MS, many patients go on to develop secondary progressive MS, with gradual accrual of disability independent of relapses. (C) Primary progressive MS is characterized by the absence of relapses and the gradual accrual of disability from disease onset.
Table 1.1 Presenting symptoms in MS

<table>
<thead>
<tr>
<th>Symptom/sign</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long tract symptoms (i.e. those arising from brain or spinal cord)</td>
<td>52</td>
</tr>
<tr>
<td>Multifocal symptoms</td>
<td>21</td>
</tr>
<tr>
<td>Optic neuritis</td>
<td>18</td>
</tr>
<tr>
<td>Brainstem symptoms</td>
<td>9</td>
</tr>
</tbody>
</table>

Adapted from Confavreux et al.5

Table 1.2 McDonald criteria for the diagnosis of MS (2010)6

<table>
<thead>
<tr>
<th>Clinical presentation</th>
<th>Additional data needed for MS diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ≥2 attacks AND objective clinical evidence of ≥2 lesions; OR</td>
<td>None</td>
</tr>
<tr>
<td>• Objective clinical evidence of 1 lesion AND reliable history of ≥1 previous attack</td>
<td></td>
</tr>
<tr>
<td>• ≥2 attacks AND objective clinical evidence of 1 lesion</td>
<td>Dissemination in space</td>
</tr>
<tr>
<td>• 1 attack AND objective clinical evidence of ≥2 lesions</td>
<td>Dissemination in time</td>
</tr>
<tr>
<td>• 1 attack AND objective clinical evidence of 1 lesion (clinically isolated syndrome)</td>
<td>Dissemination in time and space</td>
</tr>
<tr>
<td>• Insidious neurological progression suggestive of MS (primary progressive MS)</td>
<td>1 year of disease progression (prospective or retrospective)</td>
</tr>
</tbody>
</table>

- ≥1 T2 lesion in at least 2 of 4 ‘MS-typical’ regions of the CNS (periventricular, juxtacortical, infratentorial or spinal cord); OR
- Simultaneous presence of gadolinium-enhancing and non-enhancing lesions on a single scan; OR
- A new T2 and/or new gadolinium-enhancing lesion on a follow-up MRI; OR
- Dissemination in time: simultaneous presence of gadolinium-enhancing and non-enhancing lesions on a single scan, or a new T2 and/or new gadolinium-enhancing lesion on a follow-up MRI; AND
- Dissemination in space: ≥1 T2 lesion in at least 2 of 4 ‘MS-typical’ regions of the CNS (periventricular, juxtacortical, infratentorial or spinal cord); OR
- Evidence of dissemination in space on MRI of brain and/or spinal cord
- Positive CSF oligoclonal bands and/or elevated IgG index

CNS, central nervous system; CSF, cerebrospinal fluid; IgG, immunoglobulin G; MRI, magnetic resonance imaging; MS, multiple sclerosis.

Table 1.3 ‘Red flags’ indicating that an alternative diagnosis to MS should be sought

- Age >60 years
- Hyperacute onset suggestive of vascular aetiology
- Lower motor neuron features, amyotrophy
- Significant nerve root pain
- MRI not in keeping with MS
- Features suggestive of an alternative multisystem disorder involving the CNS, such as aphthous ulcers, photosensitive rash

Adapted from Confavreux et al.5
Approximately 85% of people with MS present with a relapse, defined as acute deterioration in neurological function, followed by partial or total recovery (remission). The symptoms experienced during a relapse are dependent on the site of the lesions, although certain presentations are more common (Table 1.1). The first clinical event is described as a clinically isolated syndrome.

If a patient has a second relapse or shows magnetic resonance imaging (MRI) evidence of active disease then they fulfil the criteria for clinically definite relapsing–remitting MS (RRMS). The probability of progression from clinically isolated syndrome to clinically definite MS is highly dependent on MRI and cerebrospinal fluid (CSF) findings. Patients may have relapses for a number of years, and may accrue fixed disability with each relapse. After disease duration of 10–25 years, patients with RRMS may begin to accrue disability independent of relapses. They are then described as having secondary progressive MS (SPMS). Patients with SPMS may or may not continue to have relapses.

A significant minority of patients (10–15%) present with a progressive course from the outset without relapses. These patients are described as having primary progressive MS (PPMS). Rarely, a patient with a PPMS course has superimposed relapses and this is then referred to as progressive relapsing MS.

If a patient has been diagnosed with MS for 15 years and remains independently mobile, then they are referred to as having ‘benign MS’. This diagnosis can only be made in retrospect.

Common clinical presentations

Although patients with MS may present with any number of neurological deficits, there are a few clinical presentations that are particularly common and worthy of further discussion.

Optic neuritis
Approximately 20% of patients who go on to develop MS present with optic neuritis (ON). Not all patients with ON go on to develop MS, but the overwhelming majority of patients with MS have at least one episode of ON.

The diagnosis of ON is predominantly a clinical one. Patients complain of unilateral visual blurring and/or colour desaturation. This is typically associated with retroorbital eye pain, which is exacerbated by eye movements. Symptoms develop over days, and an ongoing deterioration in vision after 2 weeks suggests an alternative diagnosis. In ON associated with MS, total visual loss is rare, and suggests an alternative underlying aetiology.

Examination of the fundus may reveal normal findings (1.2), or swelling of the disc, if the site of inflammation is anterior. The latter is referred to as papillitis and is seen in approximately 30% of patients presenting with ON (1.3). An afferent pupillary defect or relative afferent pupillary defect is commonly found, although this may be subtle in mild cases. Following resolution of an acute attack of ON, optic atrophy can be seen (1.4). MRI during an acute attack of ON may show gadolinium enhancement of the optic nerve sheath (1.5).

Treatment of an acute attack of ON is with intravenous steroids (most commonly methylprednisolone, 1 g/day for 3 days). This hastens recovery, but does not have any effect on long-term visual outcome.

Transverse myelitis
There are a large number of causes of acute transverse myelitis, of which MS is only one. The clinical history tends to be that of evolution of weakness and/or sensory symptoms over days. Patients may have loss of pain, temperature and vibration sensation with a clear sensory level. Bladder and bowel function may also be affected.

Lhermitte’s syndrome, in which neck flexion results in paraesthesia down the spine and in the upper and/or lower limbs has classically been associated with a demyelinating lesion in the cervical spinal cord. However, this sign is not pathognomonic of MS, and may be seen in other conditions such as compressive myelopathies. A rare manifestation
4 Diagnosing multiple sclerosis

Diagnosing multiple sclerosis

is flexor spasms due to spontaneous activation of motor pathways. The spasms are usually self-limiting, resolve within 4–6 weeks, and they respond to sodium channel blockers (e.g. carbamazepine).

The diagnostic modality of choice for acute transverse myelitis is MRI. This may show a signal change within the spinal cord on T2-weighted sequences, with or without cord swelling (1.6). In MS, this signal change is typically asymmetric, and rarely exceeds two vertebral segments in length. Lesions longer than this are referred to as longitudinally extensive transverse myelitis and are more common in the MS mimic neuromyelitis optica (Devic’s disease). In transverse myelitis associated with MS, lesions typical for MS may be seen elsewhere in the CNS.
Brainstem symptoms

Approximately 1 in 10 patients with MS will present with a brainstem syndrome. Common presentations include internuclear ophthalmoplegia, which can be bilateral (caused by bilateral lesions affecting the medical longitudinal fasciculi), ataxia with nystagmus, sixth nerve palsy and facial numbness. Less commonly, facial palsy, trigeminal neuralgia, hemifacial spasm, facial myokymia and other ophthalmoplegias may be seen.

A number of brainstem syndromes are not commonly associated with MS. These include complex and complete external ophthalmoplegia, third nerve palsy, progressive trigeminal neuralgia and focal dystonia with or without torticollis. Multiple cranial neuropathies should prompt the search for an alternative diagnosis.

Cerebrospinal fluid

The majority of patients diagnosed with MS will have CSF analysis performed. Typical findings are described in Table 1.4. Although CSF analysis is only included in the diagnostic criteria for PPMS, it is often examined in cases where RRMS is suspected. CSF examination is important in suspected MS as it can both support the diagnosis of MS and exclude alternative diagnoses.

<table>
<thead>
<tr>
<th>Table 1.4 Typical CSF findings in MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CSF may show mild pleocytosis (<50 × 10⁶ leucocytes/l), predominantly neutrophils</td>
</tr>
<tr>
<td>• Unmatched oligoclonal bands unique to cerebrospinal fluid</td>
</tr>
<tr>
<td>• Raised CSF IgG index indicating central nervous system production of IgG</td>
</tr>
<tr>
<td>• Protein typically normal or slightly raised</td>
</tr>
<tr>
<td>• Glucose typically normal</td>
</tr>
</tbody>
</table>

CSF samples are obtained via lumbar puncture (1.7). While this has traditionally been performed using cutting needles (otherwise known as traumatic or Quinke needles),...
there is a move towards the use of atraumatic needle systems (Sprotte) (1.8). These have been shown to reduce the rates of post-lumbar puncture headache in those undergoing diagnostic lumbar puncture.

CSF should be collected in a polypropylene tube (1.9). Basic CSF parameters (protein and glucose) are usually normal. Although there may be a slight elevation in the CSF white cell count, particularly in the context of an acute relapse, this tends not to be marked.

The hallmark of MS is the presence of CSF oligoclonal IgG bands (1.10), which are present in more than 90% of patients. These represent the intrathecal synthesis of oligoclonal immunoglobulin G (IgG), which is unique to the CSF, and not present in a paired serum sample. Oligoclonal bands are detected using isoelectric focusing with immunofixation. It must be noted that oligoclonal bands are not specific for MS, as they may be present in a number of conditions, including CNS infections, CNS lupus and other autoimmune disease (e.g. paraneoplastic syndromes). Their presence is therefore merely supportive of a diagnosis of MS and should be interpreted alongside clinical history. The absence of oligoclonal bands is very useful in excluding a diagnosis of MS (i.e. their negative predictive value).
Magnetic resonance imaging
The typical MRI findings seen in MS is multifocal demyelination. This is visualized as T2-weighted hyperintensities seen on unenhanced MRI (1.11). Acute lesions may enhance after administration of gadolinium. The MRI findings in MS are discussed in more detail in Chapter 3.

Neurophysiology
The role of neurophysiology in the diagnosis of MS will be discussed more in Chapter 4. Suffice to say, the main value of neurophysiology is to show central conduction slowing, which is pathognomonic of demyelination. Conduction slowing is useful to show subclinical involvement of specific pathways, which often helps to show dissemination of lesions in space.

Differential diagnosis
An accurate diagnosis of MS is dependent on both the exclusion of plausible alternative diagnoses, the range of which may depend on presenting symptoms and signs, as well as a clinical picture in keeping with MS. The differential diagnosis of MS is covered in more detail in Chapter 5.

Online resources for patients and practitioners
Online resources can be a valuable source of information and support for both patients and practitioners. A number of websites are particularly recommended (Table 1.5).

1.11 Typical MRI showing (A) periventricular T2-weighted hyperintensities, two of which are arrowed; and (B) pericallosal hyperintensities shown on T2 FLAIR imaging.
Diagnosing multiple sclerosis

Table 1.5 Online resources for people with MS, and those with an interest in MS

<table>
<thead>
<tr>
<th>Resource</th>
<th>Web address</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS Society of Great Britain and Northern Ireland</td>
<td>www.mssociety.org.uk/</td>
</tr>
<tr>
<td>MS Trust</td>
<td>www.mstrust.org.uk/</td>
</tr>
<tr>
<td>Shift MS – for young people with MS</td>
<td>http://shift.ms/</td>
</tr>
<tr>
<td>Multiple Sclerosis blog</td>
<td>www.multiple-sclerosis-research.blogspot.co.uk/</td>
</tr>
<tr>
<td>Multiple Sclerosis Resource Centre</td>
<td>www.msfc.co.uk/</td>
</tr>
<tr>
<td>National MS Therapy Centres</td>
<td>www.msnl.org.uk/</td>
</tr>
<tr>
<td>National MS Society (North America)</td>
<td>www.nationalmsociety.org</td>
</tr>
<tr>
<td>Multiple Sclerosis International Federation (MSIF)</td>
<td>www.msif.org/en/</td>
</tr>
</tbody>
</table>

References